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Spatial recurrence plots
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We propose an extension of the recurrence plot concept to perform quantitative analyzes of roughness and
disorder of spatial patterns at a fixed time. We introduce spatial recurrence plots �SRPs� as a graphical
representation of the pointwise correlation matrix, in terms of a two-dimensional spatial return plot. This
technique is applied to the study of complex patterns generated by coupled map lattices, which are character-
ized by measures of complexity based on SRPs. We show that the complexity measures we propose for SRPs
provide a systematic way of investigating the distribution of spatially coherent structures, such as synchroni-
zation domains, in lattice profiles. This approach has potential for many more applications, e.g., in surface
roughness analyzes.
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I. INTRODUCTION

Recurrence plots �RPs� have been introduced as a numeri-
cal tool to calculate the maximum Lyapunov exponent re-
lated to a time series �1�. Later it was shown that RPs can
also be used to study the nonstationarity of a time series as
well as to indicate its degree of aperiodicity �2�. Many time
series obtained from experiments and theoretical models are
nonstationary due to the existence of multiple time scales
�3�. The basic idea of a RP is to start from a phase space
embedding �using delay coordinates, for example� and com-
pare the embedding vectors with each other, drawing pixels
when the Euclidean distance between vectors is below some
threshold. In other words, RPs are graphical representations
of the correlation matrix for time-delayed phase points �4�.

As an example, stationary time series yield RPs which are
homogeneous along a diagonal line. Moreover, if the RP
shows a cloud of points with a homogeneous yet irregular
distribution, then the time series has a pronounced stochastic
nature. On the other hand, the formation of patterns in RPs
may indicate stationary chaotic behavior. Recurrence plots
have been extensively used for a wide variety of applica-
tions, such as to recover smooth dynamics from time series
�5,6�, measure complex behavior in heart-rate-variability
data �7�, fluid dynamics �8�, electroencephalographic data
�9�, and noise reduction �10,11�.

Since RPs have been found so useful on characterizing
complex dynamics in the time domain, their extension to the
spatial domain—the characterization of spatial order and
disorder—would be a welcome addition to the toolbox of
nonlinear dynamics. In particular, spatial recurrence plots
�SRPs� can shed some more light on the outstanding problem
of how to characterize spatiotemporal chaos, regarded here
as the loss of spatial and temporal correlations in different
scales �12�.

In this paper we propose an extension of RPs to spatial
systems by considering space-separated vectors obtained

from a given spatial pattern at a fixed time. Spatial return
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properties of lattice coupled systems have been studied
�13,14�, but an approach via RP has not been done so far. As
a prototype of a class of spatially extended dynamical sys-
tems we consider coupled map lattices �CMLs�. Here we use
the discreteness of CMLs as a natural way to consider spa-
tially separated vectors, in a straightforward application of
the embedding technique �16�. Spatially disordered one-
dimensional patterns stemming from chaotic deterministic
systems can be numerically produced as the output of a lat-
tice of coupled logistic maps, for example. Sinha has inves-
tigated the influence of parametric noise on the spatially ho-
mogeneous phase of a generalized coupled map lattice with
varying ranges of interaction �17�.

A lattice of coupled chaotic maps is able to generate com-
plex profiles consisting of a spatially disordered region co-
existing with spatially homogeneous plateaus, which is just
the kind of situation for which we claim SRPs are useful. In
this sense the CML model considered in this paper is para-
digmatic. Moreover, if we have in mind that many numerical
schemes for integration of partial differential equations
�PDEs� resort to space and time discretizations, results ob-
tained for coupled map lattices are also of potential interest
for PDEs.

We claim that SRPs can be used to distinguish different
kinds of disordered spatial patterns. As we will see, SRP
provides a way to detect and quantify the existence of spa-
tially coherent domains coexistent with disordered regions.
Usual methods of analyses do not always cope with these
kind of spatially complex patterns, since they focus on gross
features of the pattern, rather than on the details of the co-
herent domains. One of the most widely applied measures of
profile roughness is the interface width, defined for a one-
dimensional profile h�i�, i=1,2 , . . . ,N being the discrete spa-
tial index, as the rms fluctuation in the height h at fixed time
�18� w�N�=� 1

N�i=1
N �h�i�− �h��2	1/2, where �h�= �1/N��i=1

N h�i�
is the average height of the profile. The interface width quan-
tifies the profile smoothness degree, but it smears out the

pattern irregularities, overlooking possibly existent spatially
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coherent domains. This is also a shortcoming of statistical
treatments based on a height-height correlation function,
which provides a good description of self-affine profiles,
such as those found in brittle fracture profiles �19�; and for
which the corresponding Hurst exponent was found to take
on a universal value �20�.

In addition, techniques based on spatial Fourier transform,
while being linear procedures, may not work properly for
spatial profiles generated deterministically by a nonlinear
process. Moreover, Fourier transforms are very sensitive to
noise in that spurious peaks may appear in the spectra of
complex profiles. For example, if one performs a spatial Fou-
rier analysis of a profile consisting of regular plateaus mixed
with irregular domains, we can resolve only some “wave
vector” peaks, without any information about the length and
number of spatially coherent plateaus. In SRPs, on the con-
trary, those plateaus are directly linked to the vertical and/or
horizontal structures; and accordingly we use quantitative
diagnostics such as the laminarity and trapping length in or-
der to characterize such a complex spatial profile. The diffi-
culties pointed out for Fourier techniques are not likely to
disappear if other techniques, e.g., wavelets, are used.

Another advantage of the spatial recurrence analysis is the
possibility it opens to distinguish between spatial profiles
generated by random processes, as in the Kardar-Parisi-
Zhang equation �21�, from those obtained as a result of cha-
otic space-time dynamics. For the latter we choose a coupled
lattice of chaotic maps, since it became a paradigmatic ex-
ample of spatially extended systems and a useful benchmark
where techniques such as SRPs can be tested before their use
in more complicated systems. We foresee potential applica-
tions of the SRP technique in various fields, especially in the
surface roughness analyses applied to situations such as
flowing sand patterns �22�, semiconductor interfaces �23�,
friction reduction �24�, and sea-floor microtopography �25�,
among many others.

The paper is organized as follows. In the second section
we describe the CML to be studied and the basic ideas un-
derlying spatial embeddings at a fixed time. Such an embed-
ding furnishes space-separated vectors, from which a spatial
correlation integral can be computed. Section III introduces
SRPs from space-separated vectors and presents quantitative
characterizations of spatial randomness based on symmetric
structures found in the plots. The last section contains our
conclusions.

II. SPATIAL EMBEDDING FOR A LATTICE-COUPLED
DYNAMICAL SYSTEM

Coupled map lattices are spatially extended systems with
discrete time and space, but allowing a continuous state vari-
able attached to each lattice site, satisfying a given dynami-
cal process �26�. They have been extensively used for more
than two decades, thanks to the fact that many features, com-
mon to spatially extended systems, are already present in
CMLs; but can be observed with considerable saving of
computer time, when compared to partial differential equa-
tions, for example Ref. �27�.

One particular advantage of CMLs is their flexibility to

cope with one’s needs of simulating particularly interesting
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spatio-temporal patterns. For instance, much work has been
done in logistic map lattices with local �diffusive� interac-
tions, for which only the nearest-neighbor sites are coupled
to a given map �28�. However, the resulting phase diagram is
rather sensitive to variations of the nonlinearity parameter.
Hence we shall take the extreme case of a logistic map at
outer crisis, where the local dynamics is the most chaotic,
and use a flexible coupling scheme. This also includes long-
range interactions such that the coupling strength decreases
with the lattice distance in a power-law fashion �29�.

Accordingly, the CML model to be used in this paper
to generate spatially disordered patterns, consists of a
one-dimensional chain of N sites labeled by the superindex
i=0,1 , . . . ,N−1. At each site a dynamical variable at time n,
xn

�i�, evolves in time according to a discrete process
x� f�x�=4x�1−x�, where x� �0,1�, for which the uncoupled
maps display strongly chaotic behavior with Lyapunov expo-
nent �U=ln 2. The nonlocal form of coupling to be dealt with
in this paper is

xn+1
�i� = �1 − ��f�xn

�i�� +
�

�����j=1

N�
1

j� �f�xn
�i+j�� + f�xn

�i−j��� , �1�

where ��0 and ��0 are the coupling strength and range
parameters, respectively, N�= 1

2 �N−1� for N odd, and

���� = 2�
j=1

N�
1

j� �2�

is a normalization factor.
In the right hand side of Eq. �1� there is a weighted aver-

age of terms involving non-nearest neighbors of each site,
���� being the sum of the corresponding statistical weights.
A virtue of this coupling prescription is that the diffusively
coupled lattice, where only nearest neighbors are connected,
emerges out as a particular case of Eq. �1�, when �→�. On
the other hand, if �=0, we recover the global �or “mean-
field”� coupling, for which all sites interact in the same way
regardless of their relative position in the chain. Periodic
boundary conditions �x�i�=x�i±N�� and random initial condi-
tions �x0

�i�� will be used throughout this paper.
In CMLs there is typically an interplay between spatial

and temporal degrees of freedom. Hence, one is faced with
the more difficult problem of characterizing spatiotemporal
chaos, whose rigorous definition has been given by Buni-
movich and Sinai �30�, and relies on a suitable Sinai-Ruelle-
Bowen measure, which has been obtained for quite a few
cases, such as CMLs of expanding circle maps �31�. Since a
rigorous characterization of spatiotemporal chaos is still re-
stricted to such cases, we identify its existence, for practical
purposes, by means of two predicates: �i� decay of time cor-
relations, with a nonzero Kolmogorov-Sinai entropy and �ii�
decay of spatial correlations over the lattice �32�.

The numerical characterization of the latter property can
be accomplished, for example, by the analysis of the spatial
autocorrelation function. Let us consider, for a fixed time n,
the average value of the map amplitudes over the entire lat-
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tice: �x�n= �1/N��i=1
N xn

�i�. The corresponding deviations from
this average are x̂n

�i�=xn
�i�− �x�n, such that the spatial autocor-

relation function is defined as

en�l� 


1

N
�
i=1

N

x̂n
�i�x̂n

�i+l�

1

N
�
i=1

N

�x̂n
�i��2

, �3�

for a given time n and spatial displacement l=1,2 , . . . �notice
that, due to the periodic boundary conditions assumed, the
spatial displacement is measured in a given ring�. It has been
found that, for lattices of strongly disordered maps, this cor-
relation decays with the spatial delay l as a power law �32�.
In complex patterns formed by spatially ordered and disor-
dered regions, it turns out that e�l� decays with l in a slower
fashion, but without yielding much information about the
spatial structure of the pattern �14�.

Another possibility is the adaptation of nonlinear time-
series diagnostics to investigate spatial randomness at a fixed
time �13�. Given a spatial amplitude profile at time n,
�xn

�0� ,xn
�1� , . . . ,xn

�N−1�	, we can form an immersion in a
m-dimensional space, by defining space-separated vectors

��n
�i� = �xn

�i�,xn
�i+1�, . . . ,xn

�i+�m−1��� , �4�

where the spatial separation can be taken as one site and m
will be referred to as the embedding dimension.

This procedure has some similarities with the use of time-
delay coordinates used to reconstruct the phase space dynam-
ics of a given system from a time series �3�. However, it
must be emphasized that the purpose of this construction
here is rather distinct, if compared with what is done for a
time series. By way of contrast, our main goal using space-
separated coordinates is to provide a quantitative character-
ization of the spatial order and disorder of a complex pattern
at a fixed time. While certain measures of roughness turn out
to be useful when characterizing spatial patterns, they often
fail when the latter consist on more than a single feature. An
example readily found in CMLs are patterns composed of
smooth domains of different lengths separated by “defects”
with spatial disorder. If we try to measure the roughness of
this pattern by computing, for instance, the mean square de-
viation with respect to a spatial average, these inhomogene-
ities are somewhat overlooked.

The simplest embedding is a two-dimensional spatial re-
turn plot of each site amplitude �at a fixed time� xn

�i� versus
the amplitude of its nearest neighbor xn

�i+1�. In Figs. 1�a�–1�f�
we depict a sequence of spatial return plots for the CML �1�
with N=1001 logistic maps at time n=5000. We considered
six combinations involving weak �low �� and moderately
strong coupling, and an effective range parameter varying
from global to local interactions.

If the coupled maps lack spatial correlation, what occurs
for weak coupling, even when their dynamics is periodic, the
corresponding return plot reveals a cloud of scattered points
�Figs. 1�a�–1�c��. There is an approximate symmetry of the
point clouds with respect to the diagonal line S :x�i�=x�i+1�.
n n
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When the coupling becomes global �small values of ��, the
overall behavior does not change much, except that the
clouds appears to concentrate in a subinterval of �0,1�. As
we increase the coupling strength �, we see that, even for a
local coupling �Fig. 1�d��, there is a concentration of points
around S. This means that, while the coupling is rather
strong, the spatial pattern is disordered for many different
times, what can be grasped in Fig. 2�a�, which is an
amplitude-space-time plot typical in spatiotemporal chaos
scenarios. We remark that, while Figs. 2�a�–2�c� present lat-
tices with a smaller number of sites, for the sake of better
visualization, the conclusions drawn here hold also for larger
lattices.

If the range parameter � is further decreased towards
zero, the coupling between lattice sites becomes more of a
global nature, and the cloud of points in the spatial return
plot shrinks down to the diagonal line �see Figs. 1�e� and
1�f��. In terms of the corresponding three-dimensional space-
time plots �see Figs. 2�b� and 2�c�, respectively� we conclude
that, while the temporal evolution of the patterns still seems
irregular, the spatial patterns become smoother. Hence, it
turns out that spatial return maps are not sufficiently detailed
to describe these different types of behavior.

For a very strong coupling the chaotic maps can even
synchronize, in the sense that they share the same value of
amplitude at each time n within a given interval xn

�1�=xn
�2�

=xn
�3�= ¯xn

�N� �15�. In the case of chaotic synchronized maps,
the spatial return plot would reduce to a single point lying on
S. We find numerically that this nearly occurs when the cou-
pling range is close to the mean-field case �=0, as can be
seen in the small diagonal dash at the upper right-hand side

FIG. 1. Spatial return maps for a coupled map lattice �1� with
N=1001 at a fixed time n=5000, and �a� �=2.0, �=0.1; �b�
�=1.0, �=0.1; �c� �=0.5, �=0.1; �d� �=2.0, �=0.5; �e� �=1.0,
�=0.5; �f� �=0.5, �=0.5 �large plot� and �=0.2, �=0.5 �small plot�.
of Fig. 1�f�.
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The point cloud density in the spatial return plot, at a
given time n, can be numerically computed from a correla-
tion “integral,” which involves a summation over all pairs of

vectors ��n
�i� belonging to the spatial return plot whose point-

wise distance is less than a certain cutoff radius l:

FIG. 2. Space-time-amplitude plots for the CML �1�, with
N=51 sites, �=0.5 and �= �a� 2.0, �b� 1.0, and �c� 0.5.
056207
Cn�l� = lim
N→�

1

N2 �
i,j=0

N−1

��l − ���n
�i� − ��n

�j��� , �5�

where �¯ � is the Euclidean norm and � is the Heaviside
unit step function.

Figures 3�a�–3�f� show the dependence of the spatial cor-
relation integral �5� on the cutoff radius l at a fixed time and
for three different and randomly chosen initial lattice pat-
terns. The quantity Cn�l� increases with l monotonically from
zero �when the cutoff radius vanishes� to unity �when the
radius is large enough to engulf the whole point cloud� �Fig.
3�a��. There is some variation with the initial condition cho-
sen, since we are dealing with patterns exhibiting spatio-
temporal chaos, as shown by the space-time-amplitude plot
in Fig. 2�a�.

When the maps are weakly coupled �Fig. 3�b��, Cn�l�
starts to saturate after 0.9 and, as the coupling strength in-
creases �Fig. 3�e� and 3�f��, while the curves reach unity at
roughly the same value, there are initial patterns for which
the saturation occurs earlier, and this is a consequence of the
tendency to synchronization as the coupling strength in-
creases and the range parameter approach values near zero
�see also Figs. 2�b� and 2�c��.

We found that, in analogy with time series, the spatial
correlation integral also scales with the cutoff radius as a
power law Cn�l�� lD2, where D2 is the correlation exponent,
which can be regarded as a spatial analog of the correlation
dimension for the attractor reconstructed through the embed-
ding procedure �note, however, that even in the time domain
the algorithm used yields only numerical estimates� �33�.

FIG. 3. Spatial correlation integral versus radius l for the CML
�1� with N=201, at a fixed time n=2000 and �a� �=2.0, �=0.1; �b�
�=1.0, �=0.1; �c� �=0.5, �=0.1; �d� �=2.0, �=0.5; �e� �=1.0,
�=0.5; �f� �=0.5, �=0.5.
Due to the extensive nature of the CML, the values taken on
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by the exponent D2 increase with the embedding dimension
m. More significant results can thus be obtained by consid-
ering the density of the correlation dimension d2=D2 /m
�13�. The idea of dimension densities has also been found to
be very useful in time series from low-dimensional dynami-
cal systems and higher-dimensional spatiotemporal systems
�34�.

Figure 4 shows the variation of the spatial correlation
exponent with the embedding dimension m, where we verify
a monotonic increase and convergence to a constant value
of the correlation dimension density. Accordingly, a least
squares fit made after m
10 furnishes a density of
d2=0.36. This value compares well with the correlation di-
mension density of 0.30±0.04 obtained for a quadratic map
lattice with a nearest-neighbor but different coupling pre-
scription with respect to ours �13�. This finding supports the
view that the second-order Renyi entropy for a lattice, at a
fixed time, is an extensive quantity as is the Shannon en-
tropy. The latter measures the information needed to describe
the state of the lattice at any fixed time �35�. Thus we can
regard d2 as a lower bound for the density of information
dimension, as given by the Kaplan-Yorke formula from the
spectrum of the Lyapunov dimension �36�. Even though we
used different boundary condition, we can assume that the
difference between the entropies of the open and the closed
systems, at fixed time, would be a constant �13�.

III. SPATIAL RECURRENCE PLOTS

A. Graphical representation of the spatial recurrence matrix

A promising approach to analyse spatial patterns in com-
plex dynamical systems is based on their recurrence proper-
ties. We work with a spatial two-dimensional embedding,

FIG. 4. Spatial correlation exponent as a function of the embed-
ding dimension m, for the CML �1� with N=1001, at a fixed time
n=2000, �=5.0, and �=0.1. The straight line is a least squares fit
with slope equal to the correlation dimension density d2=0.36.
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using two space-separated coordinates, in such a way to con-

struct a set of vectors ��n
�i�= �xn

�i� ,xn
�i+1��. While the spatial re-

turn plot xn
�i� versus xn

�i+1� is a quite direct way to visualize
those vectors, it does not tell us too much about the correla-
tion between these vectors, since the information available is
limited to the correlation integral Cn�l�. To overcome these
limits, we propose to analyse the symmetrical N	N spatial
recurrence matrix defined by

Rij�l,n� = ��l − ���n
�i� − ��n

�j��� �6�

with entries equal to 0 �1� in the case two points ��n
�i�

= �xn
�i� ,xn

�i+1�� and ��n
�j�= �xn

�j� ,xn
�j+1�� are far apart from a dis-

tance greater �less� than a cutoff radius l. For ordinary dif-
ferential equations, it was recently shown that ordinary RPs
�in time domain� include all dynamical information of a sys-
tem �6�. On that basis we conjecture that higher order mo-
ments of the correlation would be equally present in the SRP,
even though we have no rigorous proof for this statement.

The SRP is the graphical representation of the recur-
rence matrix Rij�l ,n� in Eq. �5� for i , j=0,1 , . . . ,N−1,
in the sense that the binary values in Rij�l ,n� are represen-
ted by a matrix plot with black �white� pixels for entries
equal to 1 �0�. The spatial correlation integral �5�, Cn�l�
=limN→�

1
N2 �i,j=0

N−1 Rij�l ,n� is the pointwise density in a SRP, in
the same way it does for the point cloud of a spatial return
plot �8�. Like in the time domain, SRPs of snapshot patterns
�at a fixed time� furnish a qualitative and quantitative char-
acterization of the “sparseness” of the point cloud observed
in spatial return plots. Moreover, the presence of regular
structures in SRPs is recognized as a fingerprint of spatially
correlated clusters of points and thus of smoother spatial pat-
terns.

In Fig. 5 we present a sequence of SRPs obtained for a
CML with �=3.73 �local coupling� and �=1.0 �strong cou-
pling�, at a fixed time and corresponding to different values
of the cutoff radius l. The horizontal and vertical axes repre-
sent, respectively, the indexes i �a site� and j �its lattice-
shifted site�. A black �white� pixel represents a �i , j� pair for
which the pointwise distance is less �more� than l or, in other
words, a matrix entry equal to 1 �0�. Since the spatial recur-
rence matrix �6� is symmetric under the i→ j operation, the
SRPs are accordingly symmetric with respect to the diagonal
line.

For small cutoff radius �Fig. 5�a�� the SRP looks similar
to a fractal tapestry, or a Cartesian product of two Cantor-
type sets. The correlation integral Cn�l�, or the density
of black pixels in the SRP, is accordingly low �
0.094�.
Doubling the cutoff radius �Fig. 5�b�� the point cloud be-
comes denser and the correlation integral is significantly
higher �
0.28�. The density of the point cloud in the SRP
increases with the cutoff radius, as illustrated by Figs. 5�c�,
for which Cn�l=0.4�=0.65; 5�d�, where Cn�l=0.6�=0.91;
and Cn�l=0.8�=0.99 in Fig. 5�e�. In the last case �Fig. 5�f��
the SRP becomes entirely filled up, reflecting the saturation
existing for large cutoff radius, such that the correlation in-
tegral reaches unity. These results are in agreement with the

monotonic increase of the spatial correlation integral shown
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by Fig. 3. Since Figs. 5�c�–5�f�, obtained for quite large cut-
off radii, are so densely filled that we barely distinguish pos-
sibly existent structures, we shall use small cutoff radii, simi-
lar to l=0.1, in the forthcoming analyses.

The dependence of the SRPs on the coupling parameters
is depicted in Fig. 6. As a general trend, for a fixed cutoff
radius, the recurrence plot becomes denser as the coupling
effect is more intense, both by increasing the coupling

FIG. 5. Spatial recurrence plots for different values of the cutoff
radius for the CML �1� with N=201, �=3.73, �=1.0, n=2000 and
�a� l=0.1, �b� l=0.2, �c� l=0.4, �d� l=0.6, �e� l=0.8, �f� l=1.0.

FIG. 6. Spatial recurrence plots for the following �� ,�� values
in the coupling parameter space: �a� �2.0,0.1�, �b� �1.0,0.1�, �c�
�0.5,0.1�, �d� �2.0,0.5�, �e� �1.0,0.5�, �f� �0.5,0.5�. We used a cutoff

radius l=0.1 and N=201.
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strength � or diminishing the range parameter �. If we take a
weak coupling ��=0.1� and vary the � parameter �Figs.
6�a�–6�c�� little effect is seen in the SRP, indicating a sparse
distribution of iterates in the spatial return plot. In fact, the
values of the correlation integral vary from 0.058 to 0.047 as
� goes from 2.0 �Fig. 6�a�� to 0.5 �Fig. 6�c��. By way of
contrast, when performing the same kind of test with a stron-
ger coupling �e.g., �=0.5�, we see a denser distribution of
points with correlation integral varying from 0.11 �Fig. 6�d��,
to 0.29 �Fig. 6�e��, and 0.49 �Fig. 6�f��, as the range param-
eter decreases from a local to a global type of coupling. We
can also observe in Figs. 6�e� and 6�f� a pronounced ten-
dency of formation of checkerboard-type patterns in SRPs,
what suggests the existence of domains with high degree of
spatial coherence.

The results shown in Fig. 3 indicate that the actual value
of Cn�l� depends also on the initial conditions chosen, and so
we make an average over a number N0 of randomly chosen
initial conditions �Cn�l��= �1/N0��kCn�l ,x0k

�i��. Figure 7 pre-
sents the dependence of the average correlation integral with
the coupling range parameter �, for some representative
values of the coupling strength �. For weak coupling �e.g.,
�=0.1� the values of �Cn�l�� are close to zero and practically
independent of �. In fact, weakly coupled lattices of chaotic
maps typically present a noncoherent �nonsynchronized� be-
havior, regardless of the coupling range. This is reflected in
the sparseness of points of the corresponding SRPs �see also
Figs. 6�a�–6�c�� and in the low values that �Cn�l�� assumes
for these cases.

Higher values of � are expected to yield synchronized
patterns, though, what can be seen in the plateau of high
�Cn�l�� values existent when the range parameter � is low
enough. In such cases, a sharp transition between completely
synchronized and nonsynchronized regimes occurs for � val-
ues usually less than unity �see also Figs. 6�d�–6�f��. If � is
too large, however, the locally coupled lattice does not syn-
chronize at all, even if � takes on larger values, and the
corresponding SRPs would be so sparse as those obtained for
low �. The information on the synchronized behavior dis-

FIG. 7. Average spatial correlation integral versus the range
parameter for different coupling strengths. We used a cutoff radius
l=0.1 and N=201.
played by the average correlation integral agrees with other

-6



SPATIAL RECURRENCE PLOTS PHYSICAL REVIEW E 73, 056207 �2006�
numerical diagnostics �e.g., Kuramoto’s order parameter�
used in earlier works on synchronization of chaos in CMLs
of the type given by Eq. �1� �37�.

B. Measures of complexity in a spatial recurrence plot

Another quantitative characterization of SRPs is based on
a detailed analysis of the large and small-scale patterns or
structures: �i� diagonal structures which reflect similar local
behavior of different parts of the spatial pattern �2,9,38�, �ii�
vertical structures �black lines� represent patterns which do
not change along the lattice, e.g., as it typically happens in
intermittency �7,39�. Horizontal structures are equally useful
in symmetric recurrence plots, such that it suffices to con-
sider those vertical structures found in SRPs.

Vertical structures at a given time n can formally be con-
sidered as sequences of black pixels Rij�l ,n� such that, for a
kth vertical structure the inequality

Ri,k�l,n�Ri,k+1�l,n� + Ri,k�l,n�Ri,k−1�l,n� � 0 �7�

holds for the corresponding value of i �7�. The number of
black pixels in the kth vertical structure will be denoted as
vk. A glance at some sparse recurrence plot, say Fig. 5�a�,
shows that there are typically many vertical structures in
such a way that a frequency distribution P�vk� can be drawn
from all lines of a given SRP. We shall take vmin=2 as the
minimum length of a vertical structure.

Vertical structures represent highly correlated strings of
points in the SRP, and thus their appearance signals the ex-
istence of spatially coherent sites in the CML. In particular,
completely synchronized states, for which the state variables
share a same value as the time evolves, are extreme ex-
amples of spatially coherent states. Synchronized states in
CMLs may span the entire lattice or either form a plateau,
depending on the individual dynamical behavior of each
map, as well as the values of the coupling parameters. Thus,
we expect the formation of many vertical structures in a
CML which has a number of synchronization plateaus. How-
ever, it must be stressed that the converse is not necessarily
true: the sheer existence of vertical structures does not imply
the existence of a same number of synchronization plateaus,
but only that the sites are correlated enough to be within a
distance l in the reconstructed space. We claim that, as the
cutoff radius l tends to zero, the existence of vertical struc-
tures in a SRP implies the appearance of synchronization
plateaus in the CML and vice versa.

Marwan and co-workers �7� have defined the laminarity 

of a recurrence plot as the ratio between the number of pixels
belonging to vertical structures and the total number of pix-
els of the SRP


 =

�
vk�2

vkP�vk�

�
all k

vkP�vk�
, �8�

which represents the relative number of points forming ver-
tical structures, regardless of the lengths of each individual
structure. In order to get the latter information, it is useful to

compute the average length L of vertical structures in the

056207
recurrence plots �or “trapping length,” in analogy with the
word coined for time series�:

L =

�
vk�2

vkP�vk�

�
vk�2

P�vk�
. �9�

The total number of vertical structures in a CML of N
sites may vary between unity and N /vmin=N /2. While the
former case would represent a completely synchronized lat-
tice, the latter is usually not realized in CMLs. A completely
nonsynchronized lattice would have few vertical structures,
if any �which are possible for a cutoff radius large enough�.
Hence, a completely synchronized state has 
max=1 for any
cutoff radius l but, if l is not necessarily small, the converse
is not true in general. The smallest possible value of the
laminarity is 
min=0, in the case we do not have any vertical
structures at all. However, even if the lattice has the smallest
possible number of vertical structures, we still would have

= �N /2� / �N2�=1/ �2N�, which goes to zero as N→�.
Hence, for nonsynchronized patterns 
 takes on a small yet
nonzero value.

The trapping length seems similar to the laminarity but
conveys a different information: let us consider, for example,
a SRP with more single pixels than vertical structures. In this
case, even if there are many vertical structures �what would
give a quite large laminarity�, their proportion relative to the
isolated points �vk�2� is small, and accordingly the trapping
length can be significantly lower than the laminarity. On the
other hand, if the laminarity is small, the corresponding trap-
ping length can be comparatively large if the few vertical
structures have an individually large number of pixels. In
fact, the trapping length for a completely synchronized lat-
tice takes on its maximum value Lmax=1.0. On the other
hand, a nonsynchronized state with no vertical structures
whatsoever would have Lmin=0 for any cutoff radius l. Since,
for nonzero cutoff radius, we can have some degree of spa-
tial coherence even for nonsynchronized maps, we expect
Lmin to reach small but nonzero values again.

The average laminarity �
�, taken with respect to a num-
ber of different and randomly chosen initial patterns, is
shown in Fig. 8 as a function of the range parameter for
some representative values of the coupling strength. The re-
sults confirm the information obtained from Fig. 7, for low-
� values yield sparse SRPs, since the corresponding laminar-
ity indicates that vertical structures are comparatively rare.
Many vertical structures can be found at values of coupling
strength for which the lattice can synchronize, and, accord-
ingly, the laminarity achieves its maximum value of unity.
Curiously, intermediate values of � may give an abundance
of vertical structures even when higher � values do not. This
indicates the emergence of a number of spatially coherent
structures, within the cutoff radius �l=0.1� chosen, other than
synchronization plateaus.

Our results for the trapping length, as a function of the
range parameter, are depicted in Fig. 9. There are some simi-
larities between the information conveyed by laminarity and

trapping length: for weak coupling both �
� and �L� are low,
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thanks to the sparseness of the plots; and the combination of
� small and strong coupling leads to saturation of both quan-
tities. However, as already expected, there are quantitative
differences, especially for the large-� case. Whereas the
laminarity decreases very slowly, the trapping length goes to
zero in a steep fashion, indicating that the corresponding
SRPs have many vertical structures with a small number of
pixels, a fact that can be checked out by glancing at Fig. 6,
for example.

In order to demonstrate the usefulness of SRPs and the
numerical diagnostics of spatial complexity here introduced,
we show in Fig. 10�a� the spatial pattern �at a fixed time
n=2001� obtained for a lattice with N=1001 sites, and cou-
pling parameters �=2.0, �=1.0, and the corresponding SRP
obtained from a smaller cutoff radius l=0.05 for better
graphical resolution. The existence of a large number of pla-
teaus or near-plateaus of synchronized behavior manifests
itself in a large number of wide vertical structures. Indeed,
the spatial correlation integral, laminarity, and trapping
length take on the values R=0.175, 
=0.886, and L=5.24,
respectively. Figure 10�b� depicts a similar lattice with all
parameters kept fixed but the range parameter, which is now
�=2.8. This slight change is already enough to change the
spatial pattern for both the number and the widths of vertical

FIG. 8. Average laminarity versus the range parameter for
different coupling strengths. We used a cutoff radius l=0.1 and
N=201.
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structures decrease, and the overall pattern seems more noisy
than before. In fact, the numerical diagnostics we introduced
here exhibit lower values, namely, R=0.129, 
=0.569, and
L=3.19.

Moreover, such a difference in the spatial patterns is prac-
tically not detected by standard measures of spatial complex-
ity, such as the rugosity �r.m.s. of height fluctuations� and
the autocorrelation function given by Eq. �3�. Indeed, the
rugosity for the pattern depicted in Figs. 10�a� and 10�b� are
w=0.216 and 0.246, respectively. This is also the case with
the autocorrelation function, whose dependence on the spa-
tial delay l is shown in Fig. 11 for the two patterns exhibited
in Fig. 10. There is a similar linear decay for both patterns,
presenting nearly the same slope and with the same value of
l=9 sites for the vanishing of the autocorrelation. Hence,
SRPs can be more effective to distinguish and quantify the
complexity of such spatial patterns.

Some remarks are in order here, with respect to the nu-
merical diagnostics of spatial disorder for SRP. The correla-
tion integral, being just a density of points, does not take into
account fine structures of the point cloud distribution in a
SRP. One possible approach would be to consider higher
moments of this point density with respect to the diagonal
line; e.g., an average quadratic distance to the diagonal line

FIG. 9. Average trapping length versus the range parameter
for different coupling strengths. We used a cutoff radius l=0.1 and
N=201.

FIG. 10. Spatial pattern �at
a fixed time n=2001� and the
corresponding SRP �cutoff radius
l=0.05� obtained for a lattice with
N=1001 sites, and coupling pa-
rameters �=1.0, and �a� �=2.0
and �b� �=2.8.
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or a typical “width” of the point cloud, assuming it is sym-
metric with respect to the diagonal line. Other line of
thought, and which has been pursued in this work, considers
the structures directly observed in the SRPs, and seems to be
more fruitful in the ensuing analyses.

Very disordered spatial patterns, like those seen in CMLs
for weak coupling, are well described by both the correlation
integral and the laminarity. It is actually for complex pat-
terns, for which disordered regions coexist with smoother
ones, where the laminarity of the corresponding SRPs shows
its usefulness. Let us compare, for instance, Figs. 7 and 8, for
which both curves, in the case of higher � values, are quite
different. The correlation integral decays with increasing �
in a more abrupt way, resembling a phase transition occur-
ring at a specific critical value of �. The laminarity, on the
other hand, decays in a slower fashion, showing that the
increasing complexity of the patterns, which implies in more
vertical �or horizontal� structures, is best described by this
quantity. The trapping length, on its hand, is useful to distin-
guish spatial patterns with abundance of noncorrelated sites
from patterns with a large number of short highly correlated
pieces. This distinction is specially important for large lat-
tices.

IV. CONCLUSIONS

In order to give a graphical representation of the spatial
correlation matrix, we introduced spatial recurrence plots
�SRP� as numerical tools for identification of spatially coher-
ent patterns at a fixed time. We used coupled map lattices
�CML� as prototypical examples of complex spatiotemporal
patterns. The recurrences were computed in a two-
dimensional reconstructed space, whose coordinates are ob-
tained through spatial separations. A density of spatial corre-
lation integral can be obtained in this way, and it scales with
the number of separated lattice sites as a power law, whose
slope is the density of correlation dimension. The SRP re-
veals to be a good visual diagnostic of the spatial patterns
obtained from the CML, such as synchronized states and
other spatially coherent structures similar to domains. The

FIG. 11. Spatial autocorrelation function versus spatial delay
�measured in number of lattice sites� for the two patterns considered
in Fig. 10.
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measures of complexity, laminarity and trapping length, ob-
tained from the SRP, enable us to elucidate the role of the
vertical structures and single pixels.

Although we have restricted ourselves in this paper to a
specific CML as a paradigm system, the SRP concept is far
reaching in the sense that it can be applied to any spatial
profile. One example from condensed matter physics would
be a snapshot rugosity profile of a given sample of metallic
film: a SRP could be used, in such a case, to provide an
alternative characterization of spatial disorder and how it
would change by varying some external condition, like the
attack of chemicals �40�. Spatial recurrence plots can also
provide a systematic way to study spatiotemporal patterns in
CMLs and other spatially extended systems, such as chains
of coupled oscillators and partial differential equations �41�.
More specifically, the numerical results presented in this pa-
per can be used to investigate spatially extended systems for
which the effective interaction range is a key feature, as in
reaction-diffusion systems where there is a rapidly diffusing
component mediating the interactions through long distances
�42,43�.

Using a coupled map or a continuous-time oscillator lat-
tice is a natural choice for constructing SRPs, since the spa-
tial variable is already discretized in unit steps, so facilitating
the obtention of spatial return plots. However, other spatially
extended systems can also be investigated through the
method we have proposed in this paper. For example, con-
sider a homogeneous and periodically driven reaction-
diffusion equation �44� xt=Dxyy +R�x��k
�t−k��, where
x�y , t� is some scalar field, y is position, t is time, D is a
diffusion constant, and R�x�
 f�x�−x is a nonlinear reaction
rate. The impulsive character of the time-periodic reaction
term enables us to discretize both the space and time vari-
ables so as to obtain a locally coupled map lattice of the form
�1�, when �→�.

Time is discretized from integrating the partial differential
equation in the neighborhood of each 
-function kick, at
t=n�, whereas space is discretized through introducing a lat-
tice parameter w, such that y= iw, i a positive integer. The
coupling term in the resulting coupled map lattice will be
thus the discretized form of the second spatial derivative. If
we keep the time as a continuous variable, the resulting sys-
tem would be a chain of continuous-time coupled oscillators,
similar to a lattice of coupled Rössler chaotic systems �45�;
but the key ingredient, which is the lattice structure, would
remain the same as before. Even though we are faced with
other classes of partial differential equations, standard tech-
niques of numerical differentiation �cf. �46�� allow us to dis-
cretize space so that the lattice parameter can be normalized
to unity.

A further step would be to consider the extension of the
SRPs for running times. Since each map has its own dynam-
ics, there are as time series as maps in the lattice, with SRPs
as their corresponding snapshots at discrete times. Due to the
large dimensionality of data arrays produced with even a few
coupled systems, a discussion similar to that presented in this
paper would have to employ statistical characterization such
as, e.g., cross-correlation data analysis and bispectral tech-
niques. The application of standard statistical techniques to
higher-dimensional recurrence plots thus poses stimulant

challenges.
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